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ABSTRACT

B The nonlinear &;? problem is an unconstrained optimization
problem whose objective function is not differentiable everywhere, and
hence cannot be solved efficiently using standard techniques for
unconstrained optimization. The problem can be transformed into a
nonlinearly constrained optimization problem, but it involves many
extra variables. We show how to construct a method based on projected
Lagrangian methods for constrained optimization which requires successively
solving quadratic programs in the same number of variables as that of
the original problem. Special Lagrange multiplier estimates are used
to form an approximation to the Hessian of the Lagrangian function,
which appears in the quadratic program. A special line search algorithm
is used to obtain a reduction in the i; objective function at each

iteration. Under mild conditions the method is locally quadratically

convergent if analytical Hessians are used.
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A PROJECTED LAGRANGIAN ALGORITHM FOR NONLINEAR 21 OPTIMIZATION

Walter Murray and Michael L. Overton

1. Introduction
The problem we wish to solve is

L.P: min{Fl(x)Ix € "M

1
X
m
where Fl(x) = 3 Ifi(x)l
i=1

and the functions fi:Rn > R1 are twice continuously differentiable.
The function Fl(x) is called the 21 function and llP is referred

to as the 2. problem. The 21 problem is an unconstrained optimi-

1
zation problem in which the objective function has discontinuous
derivatives and hence it 1s inappropriate to use a standard uncon-
strained minimization method to solve it. The problem is equivalent
to the following nonlinearly constrained problem in which both the |
objective and constraint functions are twice continuously differ-
entiable:
m
ELP : min{ ] u Ix € R", u € R™}
i=]

subject to cia)(x,u)ZO, i=1,2,..., m; 0 = -1,1,

where cio) (x,u) = u, - ofi(x)

i




We could solve ELP using a method for the general nonlinear programming
problem, but this is very unattractive since m, the number of extra
variables, may L~ large. A method can be derived which exploits the
special structure of problem ELP essentially reducing it back to a problem
with n variables. One special feature of ELP is that the 21 function
Fl is a natural merit function which can be used to measure progress
towards the solution of ELP. Such.a merit function is not generally
available for the nonlinear programming problem without the introduction
of a parameter such as penalty parameter.

The method we adopt to solve llP consists of two parts at
each iteration: (1) obtain a direction of search by solving and
perhaps modifying a quadratic program based on a projected Lagrangian
algorithm for ELP, and (2) take a step along the search direction
which reduces the 21 function. The general approach is similar to
that described for the minimax problem by Murray and Overton [15].
The structure of the quadratic program to be solved is however con-
siderably different from the minimax case and this is described in full
in subsequent sections. We use a special line search algorithm which
is closely related to the one used in the minimax case. This is
discussed in Section 7; the details may be found in [14].

A number of other algorithms have been proposed for solving the
nonlinear 21 problem. These will be discussed further in Section 9,

after our algorithm has been described in full. At the time of this

writing, no other algorithms related to projected Lagrangian methods




using second order information have, to our knowledge, been published.
However, Bartels and Conn are currently doing some related work.
We note that no convexity assumptions are made about the functions

fi(x). We concern ourselves only with local minima.

1.1. Notation
All vectors are column vectors, but for convenience we will

* %
write (x,u) for (:). Define (x,u) to be a solution of ELP. It

*
follows that x 1is a solution to zlP and
IR
X) = u, .
1 1=1 i
* *
Let (x(k),u(k)) denote the k-th approximation to (x,u).

x(k+1),u(k+1))

At each iteration of the algorithm ( is obtained

by setting

L) () G ST I

+ ap and

where p 1is the direction of search in R" and a, a positive scalar,
is the steplength, and the absolute value of a vector denotes the
vector of the absolute values of the components. Note that this choice

of (x(k+1), u(k+1)) immediately guarantees that all the points {(x(k),u(k))}

are feasible for ELP, i.e. c§°)(x(k)).2 0, 1 =1,...,m, o= -1,+1.
It also follows that for each 1, at least one of the pair of constraints
(ci-l), c§+1)) must have the value zero. We will be interested in

the case where the other constraint in the pair is also zero at the




solution, i.e. the corresponding function fi is zero. Therefore at

any point x we define the active set of functions as those which we

think will have the value zero at the solution ;, based on the infor-
mation at x. This set will usually include all functions with the
value zero at the point x and may also include some with nonzero
values. The exact procedure for selecting the active set at each iteration
will be discussed in Section 8 and ﬁrocedures for modifying this choice
will be discussed in Section 5.

We define t (= t(x)) to be the number of active functions at
x and write the vector of active functions as E(x) € Rt. Define
f(x) to be the diagonal square matrix of order t whose iEE diagonal
component is 1 if %i(x) > 0 and -1 otherwise. Define G(x) to be
the n X t matrix whose columns {Qi(x)} are the gradients of the
active functions. Similarly we define ?(x) € Rm_t to be the vector
of inactive functions at x and define I(x) and V(x) to be respec-
tively the (m-t) x (m-t) diagonal matrix of the signs corresponding to
f(x) and the n x (m-t) matrix of gradients of the inactive functionms.
We also define U and u to be the subvectors of u corresponding to
f and %.

We define the active constraints at x to be both constraints

of each pair corresponding to the active functions plus the one constraint
with zero value of each pair corresponding to the inactive functions.
We can order the active constraints so that the vector of active constraint

values is given by




u - Z(x) f(x)
;(x) = ; - %(x)

u + f(x)

with u = I(x) F(x), u = I(x) £(x), by definition of u. Define A(x)

to be the (m¢n) X (m+t) matrix whose columns {aj} are the active

constraint gradients. We can order the variables {ui} so that

T T V() V(x)
Ax) = I . 0 0
0 It It

Here Is is the identity matrix of order s.

We define Y(x) and Z(x) to be orthogonal matrices respectively

spanning the range and null spaces of V(x). Provided V(x) has full

rank we have that Y(x) has dimension n X t, Z(x) has dimension n X (m-t),

and
Yo' Y = 1, 20"z = 1,

1T 2(x) = V)T z(x) = 0 .

Let g be the gradient of the objective function of ELP, i.e.

the (n#m)-vector:

o

L)
[}
oI

[, 2

where e €R™® and e €R' are vectors of all ones.

T,




The Lagrangian function associated with ELP is

Aqea

L{x,u,A) = g+ elu - ATc(x)

where X\ € Rm+t is a vector of Lagrange multipliers. The gradient of

~

L(x,u,A) with respect to x 1is g ~ AA. Define WE to be the Hessian

of the Lagrangian function with respect to (x,u). Then

W O

0 0

where W 1is the Hessian of L(x,u,A) with respect to x only, i.e.

mHt gn
W(x,A) = § A9y ()
i=1

Define ZE to be an orthogonal matrix spanning the null space of A,

i.e., ATZE = 0. It follows from the definition of A that the first

n rows of ZE can be taken to be Z, the matrix which is orthogonal

to V. Thus ZiWEZE, the Hessian of L(x,u,A) projected into the
null space of A, can also be written as ZTWZ.
We will use Pg to denote a vector in Rn+m whose first n

components are the direction of search vector p. We write

~

Pg =

T > ol

where p and p correspond to u and u.

T TR T e e ——ay




Often we will omit the arguments from the various vectors and
matrices f, V, A etc. when it is clear that they are evaluated at
(k) * Xk % a -
x . We use the notation A, V, Z to denote A, V, Z evaluated at
* %
(x,u) with the active set of functions correctly chosen, i.e., con-

*
sisting of all those functions with the value zero at x.

1.2, Necessary and Sufficient Conditions

* &
The necessary and sufficient conditions for (x,u) to be a
*
local minimum of problem ELP and therefore x to be a local minimum

of problem £.P are simplifications of the general necessary and

1
sufficient conditions for the nonlinear programming problem. A

similar argument to that given in [15] shows that the first-order con-
straint qualification always holds for ELP. The conditions therefore

reduce to the following:

First-order necessary condition

* *
If (x,u) 1is a local minimum of ELP then there exists a vector

*
of Lagrange multipliers 1 € Rt such that
Kk *
g-A =0 and X>0. (1.2)

Second-order necessary condition

* *
If (x,u) 1is a local minimum of ELP and the second-order con-
XT Kk Kk _k
straint qualification holds, then ZTw(x,A)Z, the projected Hessian of
the Lagrangian function, is positive semi-definite.

7




Sufficient condition

* *
If the first-order necessary condition holds at (x,u), the
*
Lagrange multipliers are all strictly positive, i.e. A > 0, and
XT * *_k L . * %
ZW(x,A\)2Z is positive definite, then (x,u) 1is a strong local minimum

*
of ELP. Thus in terms of £.P, Fl(x) < Fl(x) for all x such that

1
*
|x-x| < &6 , for some & > O.
In the case where all the {fi} are linear it is well-known that
*
a solution must exist with n active functions at x. Then normally
*
the matrix Z 1s null which implies the second-order conditions are

also null. The nonlinear problem, however, can have a unique solution

*
with anything from zero to n functions active at x.

2. Use of the Equivalent Problem ELP

At every iteration we wish the search direction p to be a

descent direction for Fl, i.e.

F'(x(k)

1 sP) <0,

(k)

where Fi(x ,p) 1is the directional derivative

1
1im+E

@ X xmpy - My
h+>0

(k)

It is easy to see that Fi(x »P) 1is also given by

d

‘r—, -———— -m: ’ T T TR e T TIR S S et Sew T ~— g R




f
i T T
inp + Yy lvipl (2.1)

ilfi#O ilfi=0

We have the following:

THEOREM 1. If Pg is a first-order feasible descent direction for ELP,
i.e.
g'pg < 0 (2.2)

and

(o)

T
Vcio) Pg 2 0 for all i, ¢ such that ¢y =0, (2.3)

then p 1is a descent direction for F. and hence a sufficiently small

1

step along it must result in a reduction in Fl.

Proof. Suppose for the moment that the active set consists of those
(k)

and only those functions which are zero at x , S0 that we can use

the notation developed for this. We then have ATpE > 0, and hence

- Eva +

el }
(8%
(=]

-VTp +

o
v
o

VTp +p>0.

It follows from (2.1) and (2.2) that

Fi(x(k),p) <ep+elpco. O

T T g 5 e e e - - — e e




It is possible for to be a first-order feasible direction

PE
without being a feasible direction for ELP. This causes no difficulty

since u(k+1) is set to If(x(k+1)

)| and hence it is always possible
to obtain a lower feasible point for ELP if (2.2) and (2.3) hold, by

reducing F along p.

1
A second desirable property for p arises from considering
the active set of functions, i.e. those we expect to have the value
zero at ;. We wish to choose p so that the first-order change in
these functions predicts that they will all have the value zero at

x(k) + p. An equivalent condition is:

vip = -f . (2.4)
This condition is implied by the following condition on the (n+m)-
vector pp:
ATp, = —c . (2.5)
Strictly speaking, (2.5) is a stronger condition than the pair of
conditions (2.4) and

~

T .
Apy > -c . (2.6)

However, since the only difference is that the variables {ui} are
required to be on their bounds and it will become evident later that
this does not affect the choice of search direction, for simplicity
we will require that Pg satisfy (2.5).

Thus we see that one view of ELP is as a device to obtain a

search direction p along which F., can be reduced in the line search.

1

10




We emphasize again that we wish (2.2) and (2.3) to hold so that p
is a qsscegf.di;ection for Fl, and that the active set nature of the

algorithm indicates that (2.4) and hence (2.5) should also hold.

3. Derivation and Solution of QP Subproblem

The solution of ELP is at a minimum of the Lagrangian function
in the null space of the active constraint Jacobian. The usual method
for solving a general linearly constrained problem is to approximate

the objective function by a quadratic function and then determine

the search direction by solving some appropriate quadratic program (QP).

Consider therefore the quadratic program:

QP1: min £ PgWE(X(k),l(k))PE

T
2 t e
Pg

-~

subject to ATpE= -c ,

3 (0

*
where is an estimate of A .

The constraints of QPl are equivalent to (rearranging equations):

- T +

ol

=0

>

- Wp+p=0 (3.1)

~an

>

ZVTp + p = -2if

The last two equations imply that

11
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-~ ~ -

T .n
p=3IVp=-If (3.2)

T -T- , "T"
Since g Pp = eP + e'p it follows that p can be obtained by solving

the following QP in only n variables:

T==T

(k) , Flp

QP2: min prwx 2y, 4 g

P

subject to VTp = -f .

In order to solve QP2 we introduce the matrices Y and 2Z
defined in Section 1l.1. These provide bases for the range and null
spaces of V. The matrices Y and Z may be determined from the

QR factorization of V:

~ R R
V=2 = (Y z)]
0

where R 1s an upper triangular matrix of order t. 1f % has full
T,
rank and Z WZ 1is positive definite, then the unique solution of QP2

may be expressed as the sum of two orthogonal components
P = Ypy + Zp, (3.3)

where Py € Rt and P, € Rn-t. We have

12




o .
Vip=Rp, =-f (3.4)

and pY is determined entirely by the constraints of QPl. The vector

P, 1s given by the solution of

(ZTWZ)pZ = -z (Vie + WYp,) (3.5)

We shall aiso wish to refer to the related QP with homogeneous

constraints:

QP3: min pTWp + ETEVTp

N =

subject to Vp =20 .

The solution to this is given by p = Zqz, where

(ZTWZ)qz = -zTte . (3.6)
At every iteration of our algorithm an attempt is made to set

the search direction p to the solution of QP2, but for various

In subsequent sections we explain what

reasons this may be inadequate.

action is taken in these circumstances.

4. Lagrange Multiplier Estimates

(k)

Let us first suppose that «x is a minimum on the manifold

defined by the current active set. Then for some )\ we have

A\ = g,

13




N
Writing X = (A,2 ,x ) this is equivalent to

I -nt+rw =0 (4.1)
X =e (4.2)

p ae -
A+ = (4.3)

Let us therefore define
~p Al

mT=A =) (4.4)

Equations (4.1) and (4.2) then reduce to
vr = -VTe . (4.5)

It follows from (4.3) and (4.4) that the first order necessary condition
*
A >0 is equivalent to

Ir] <1

* *
where 7 is 7 at x. The vector 7 here plays the same role as the

vector w in the linear case described by Bartels, Conn and Sinclair [5].
The question we face in this section is how to define the vector
of Lagrange multiplier estimates at any point x(k), dropping the
assumption that it is the minimum on the manifold. Multiplier estimates
are needed to define the matrix W and to determine whether constraints

should be deleted from the active set. It is better to use new informa-

(k)

tion obtained at the current point x rather than use the multipliers

of the QP solved at the previous iteration. Such an estimate should in
some sense approximately satisfy the overdetermined system based on the
first order necessary conditions:

~

A g . (4.6)

14
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Clearly it makes no sense to delete an active constraint corresponding
to an inactive function, since the corresponding variable Gi will be
s - & 8 B8 - . 9 e B Pes e s e ye s o
reduced at the end of the iteration to make the constraint active
again. Similarly, only one active constraint of the pair corresponding
to an active function should be considered for deletion. These facts
combined with the fact that the search direction is being determined
for a QP involving only n variables indicate that a special estimate
taking into account the structure of ELP should be used, as opposed to
the least squares solution of (4.6).

A

ct The special estimate for ELP

The special estimate is required to satisfy exactly

those equations in (4.6) which are exactly the same as

the equations holding at the minimum on the manifold defined by the
active set. Thus we define AC to be the least squares solution to the
approximate equation (4.1), subject to the constraint that (4.2) and
(4.3) hold exactly. Equivalently we can define T, as the solution of

the least squares problem

winifvn + VEal2 . .7

It is then not necessary to explicitly form XC’ since checking whether
a component of 7 1is greater than one in modulus is equivalent to

checking whether a component of x* or A is negative. Furthermore,

using AC to define W results in

15
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where 51 is the ith diagonal element of I. Thus T, may also be

used to define W directly.

The vector To can be computed directly from the QR factorization

of Q which we introduced in the last section to solve QP2. The estimate
is a first-order multiplier estimate in the sense defined in [15].

Because at every iteration computing the search direction involves
only the first =n variables of ELP, the multiplier estimate which
is relevant to predicting whether the steepest descent step in a sub-
space of R" will be first-order feasible is AC’ not the least squares

solution to (4.6). Let us suppose that ("C)j > 1 and that the con-

~

straint u, > -f _(x) 1s to be deleted from the active constraint set

e

(i.e. fj is to be deleted from the active function set). Define 6

as 9 with ;j deleted, and 2 by

_— - .
Vz=0, 2zz=1_.., z=I[2 z]. (4.8)

Now consider the gradient of the linear term in QP2, i.e., Vie. Since

~

vj is being deleted from the active set it should be included in the

gradient of an objective function to be minimized in the null space of

V. Therefore define the steepest descent step in the new null space
to be

Zs. = -2Z1(Vie + v

) .
z 3

16




(Here v, has a positive sign since (ﬂc) > 1.) We then have the

3 3

following result relating the estimate "o to the first-order feasi-

bility of Zs..
z

THEOREM 2. Assume V has full rank., If (nc)j > 1, then

Q?Zs- >0 .
A

Proof. We have the least squares characterization:

Vg = =(I - zzh)V%e .
Thus
(zTGj)(nC)j = -z1¥%e .

By definition of Zs. we have:

z
~TC AT
ijsi vj[Z z] si
- Al
= - [0 ijI T (Ve + vj)

T Toz- . T
-(vjz) (z'Vie + 2z vj)

-vi? @ -

j) >0 .

(The fact that V has full rank implies that v}Z # 0 and hence

sz $0.) 0

It follows from Theorem 2 that setting p = is- defines a
Z

vector Pg which is first-order feasible w.r.t. the deleted constraint

17




uj 2 -fj(x), since Pg is first-order feasible w.r.t. the retained
active constraint uj 2 fj(x). Note that (nc)j being > 1 is

equivalent to (Xg)j, the multiplier corresponding to the deleted

a

constraint, being negative. Clearly if (nc)j < -1 and hence

()\z)j < 0 then the deleted constraint would be ;j 2 %

steepest descent step would be -zz¥(¥5e - v

j(x), the

), and this would have

|

a negative inner product with vj.

AL: The least squares estimate in the larger space.

Define AL to be the least squares solution to (4.6). It is

worth emphasizing that although the signs of the components of AL

determine the feasibility of steepest descent steps for ELP in the null space |
of ; with a column deleted (see [10] and [15]), the estimate AL is not
relevant to the algorithm we describe for solving the 21 problem. This is
because (unlike in the minimax case of [15]), it is the range

and null spaces of 0, not A, which determine the search direction at

each iteration. Unlike the minimax case, AL and AC are not scalar

multipliers of each other. It will often be the case that a component

of A is negative while the corresponding component of ) is

c L
positive, indicating that if the corresponding constraint is deleted,
the steepest descent step (with respect to ELP) in the new null space
in the (nim)-dimensional space will not be feasible with respect to
the deleted constraint, while the steepest descent step (with respect

to QP2) 1in the new null space in the n-dimensional space will be

first-order feasible. The converse is much less likely to happen,

18
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i.e., where a component of A is positive while the corresponding

C
component of AL is negative, but it is possible to construct such

an example.

Quite apart from its deficiencies, the estimate AL is more
expensive to compute than AC’ since it involves the factorization of
a larger matrix. If m 1s large compared to n, then the additional
effort may be prohibitively high. There is a slight simplification
however: since the last t rows of A have full rank and are
orthogonal to the others, it follows that the last t equations in
(4.6) must hold exactly and hence a least squares problem of slightly
reduced dimension can be solved.

Clearly it is undesirable to compute xL and we will not

discuss this estimate any further,

Myt A Second-Order Estimate

A second-order multiplier estimate can be defined as the solution

to the consistent set of overdetermined equations
Auw =g+ WEPE .

The fact that the system is consistent implies that u, can be obtained

from solving

Vn = -Vie - Wp

and there is no concern about solving the larger system. A negative
component of vy does not guarantee that either a steepest descent or
Newton step will be first-order feasible with respect to the deleted

constraint.
19




Using the estimate "C to define W

Both the estimates 2 and yu will be used to decide when

C W

to delete functions from the active set. Since a function corresponding

to I(nc)jl > 1 will not necessarily be deleted from the active set,

we note here that we use Te to define W as follows:
t m-t
25 - 2=
W= ) 2vf. + ] o VEf,
421 i i =1 i i
where
-1 if (wc)i < -1
'=
L 1 if (1rC)i >1

(nc)i otherwise.

5. Properties of Solution of QP Subproblem

In this section we examine the properties of the solution to
QP2. 1Initially, we assume that all functions with zero value are
included in the active set, and that 6 has full rank and ZTWZ is
positive definite so that the solution p is given by (3.3), (3.4) and
(3.5) 18 unique. The corresponding solution to QP1l is Pg> where

p and p are given by (3.1) and (3.2). We would like to

Pg

20




satisfy (2.2), (2.3) and (2.5). Clearly the constraints of QPl ensure
that (2.3) and (2.5) hold. Thus the only question is whether Pg is
a descent direction for ELP, i.e. whether (2.2) holds. If all the

active functions have the value zero, then the following applies:

THECREM 3. Suppose that f = 0, V has full rank and ZTWZ is positive
definite. Then Pgs the solution to QP1l, is a descent direction for

ELP provided it is not zero.
Proof. We have

ngE =ept+ep=ce EVTp by (3.1) and (3.2)

Since f = 0 we have Py = 0 and p = sz as defined by (3.5). Thus

T =Te=T T,,T
g pg=e Iv sz -pZ(Z WZ)pz by (3.5)

Since ZTWZ is positive definite, ngE must be negative 1if Py + 0,

i.e. p$#0. ©O

(k)

If p = 0, then by (3.5) ZTVEE = 0 and x is a minimum on

the manifold defined by the current active constraints, and hence (4.6)

(k) is

1s a consistent set of equations with A, = ) Thus either x

c L’

the required solution, or one of the components of XC is negative or

zero, i.e. |()] > 1 for some j.

21
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Ty,

If p = 0, and at least one of the multipliers is negative,
i.e. I(HC)j| > 1, then it is necessary to delete a corresponding
function from the active set to obtain a descent direction. If p = 0,
and the component of =, with largest modulus is + 1, corresponding

c
(0

to a zero multiplier, then may or may not be a solution. We

refer to Gill and Murray [10] for the treatment of zero multipliers.

5.1. Nonzero Active Functions

~

In practice it will rarely be the case that f = 0, so we now
drop this assumption. If we were sufficiently restrictive in the
definition of the active set (e.g. no active functions) we could force
this condition to be true, but it is important for the efficiency of
the algorithm not to be too restrictive in the choice of active set.

It could then happen that is an ascent direction for ELP. It is

Pg
now necessary to introduce some further notation. We denote the
components of Pg which correspond to the orthogonal n-vectors YpY

and sz by Pgy and Pgz respectively. More specifically, we

define:
Ypy Zp,
= Wy and =| Wz (5.1)
Pey Py Pgz Pz .
-If 0
We have

Pg = Pgy * Pgz-
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Without the assumption that f = 0, both Ppy and Pgz could
be ascent directions for ELP. If either component is a descent direction
it is possible to take a weighted combination as the search direction.

Also, if ZTVEE # 0, the component can be replaced by the follow-

Pgz

ing, which must be a descent direction:

where ZqZ is the solution to QP3 and q, is given by (3.6).

When ZTVEE =0 and Ppy is an ascent direction for ELP, it
is necessary to delete a function from the active set to obtain a
descent direction. It is foolish to simply delete the active function
with the largest absolute value. The following theorem shows that,
in this situation, a constraint can always be found with a negative
multiplier estimate. The interpretation of Ppy being an ascent direction,
regardless of the magnitude of IIZTVféll, is that too many functions
have been selected to be active and are being forced to be approximately
zero at x(k) + p, thus forcing the inactive functions to increase in

modulus more than the active ones are decreasing. Therefore the follow-

ing is also useful when T # 0.

THEOREM 4. Assume V has full rank and let be defined by (5.1).

)

Pgy

If ngEY > 0, then for some j either E >0 and (

j L > 1, or

3

fj <0 and (nc)j < ~1.
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Proof. It follows from ngEY > 0 that

ETEVTYpY -erf>o0 .

A characterization of the solution of the least squares problem (4.7) is

Vn, = -YYTVie

Multiplying both sides by YpY, we have from (3.4) that

T ~==T
ﬂcf erV YpY
and hence
noE > elrE .
Therefore for some j, (1rC)j fj > Ifjl and the result follows. a

It also follows from the above that if ngEY = 0, then either

f =0 (covered by Theorem 3) or the maximum element of “C in modulus

is one (the minimum multiplier estimate is zero). It is worth noting
that Theorem 4 does not hold in general if other multiplier estimates

such as A and M, are substituted for A

L c’

It follows from Theorem 4 in conjunction with Theorem 2 that

if Pry is an ascent direction we can delete the active constraint

corresponding to a negative component of AC to obtain a first-order

feasible direction. As in [15], we will not actually take the steepest
descent direction Zs_ 1in the new null space. Instead, we will first
A

try computing the Newton step iq-, defined by (4.8) and
YA
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(iTw},)qi = -z (Vie + sgn(nc)ij)

where the j-Eh active function was deleted. If £q~ is first-order
feasible with respect to the deleted constraint, wz take as our search
direction y§p§ + iqi for some vy, 0 { y < 1, where ; spans the range
of 6 and Py is defined by removing the jEE equation from (3.4).

Otherwise we replace 2q. by Zr., where
Z Z

9

Nt

v,)

-zT(VEE + sgn('nc)j 3

q, is given by (3.6) and z by (4.8). The proof that iré is a
descent direction and is first-order feasible combines the methods
of proof of Theorem 5 of [15] and Theorem 2 above in a straightforward
way, so we do not present it here.

We do not wish to minimize on manifolds but to delete‘constraints
early when the multiplier estimates become sufficiently reliable. The
above discussion of the step to take after deleting a comstraint applies

to this situation as well as to the situation when BTPEY > 0. Both

AC and u, are computed when possible so that they can be compared.
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5.2. Avoiding a Rank-Deficient Jacobian or an Indefinite Projected Hessian

The methods used to avoid a rank-deficient matrix Q or an indefi-
nite matrix ZTWZ are identical to those used in [15]. In the former case,
instead of ordering the potential columns of A by the size of {cj}
we order the potential colummns of 6 by the size of {Ifjl} in the QR

factorization of the Jacobian.

6. Quasi-Newton and Finite Difference Approximations to the Hessian

In practice we may wish to use a quasi-Newton or finite
difference approximation to W rather than the analytical Hessians

{szi}' The main difference between the £, and minimax cases in this

1

regard is that for the zl case, W 1involves Hessians of all the m
functions {fi}, while in the minimax case W 1involves the Hessians
of only the t active functions. Thus a finite difference approxi-
mation to W requires extra gradient evaluations of all m functions
at each iteration instead of just those t which are active. Since
for many applications (particularly arising from data approximation)

m 1is much larger than n and hence t, this means that finite
difference approximations may be considerably more expensive than a
quasi-Newton approach for an 21 problem, while a finite difference
approximation may be more efficient for a comparable minimax problem.

Note, however, that the extra evaluations of each gradient need only

be done n-t times, along each column of 2Z.
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7. Determining the Steplength

We use a special steplength algorithm tailored to the 21 problem
to obtain the steplength o at each iteration. This algorithm is pre-

sented in [14]. The initial step o, 1is set to either one, or the

0

shortest estimated step to a zero of an inactive function, if this is

less than one. Thus

ag = min{l,aé},
where
- f
. i [ -t i
ag min | = v.Pp # 0 and o <0
viP vip

8. Selecting the Active Set

Currently we use the same active set strategy as that described
for problem £ P in [15]), with some slight modifications, as follows.
We define the scaled function values by Ei = (mlfil)/Fl' Since there
may be no active functions the first decision is whether to include
the smallest one (in absolute value) in the active set. This decision
is made in the same way as the decision of whether to include a second
active constraint in the minimax case, replacing the gradient vy by
the gradient of the 21 function when no functions are active, i.e.

Vie.
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9. Relationships to Other Algorithms

We begin this section by discussing algorithms for problem
klP when the functions {fi} are linear. The equivalent problem ELP
is then a linear programming problem, although it is not in standard
form. The connection between the linear 11 problem and linear pro-
gramming (although using a different formulation from ELP) was observed
by Charnes, Cooper and Ferguson [6]. Since then a large number of
different methods have been proposed for solving the linear 11 problem
by various linear programming formulations. References to many such
methods may be found in (2,3,4,19]. Pr:otably the most widely used
method is that of Barrodale and Roberts [3], which solves a variation
of ELP put in standard form by a primal simplex method taking account
of the special structure. An alternative approach taken by Claerbout
and Muir [7] and Bartels, Conn and Sinclair [5] is to solve the problem
directly by minimizing the plecewise linear function. However, it is
possible to think of these methods as linear programming methods applied
to ELP, by considering the connection between the vector w in Bartels,
Conn and Sinclair (which corresponds to ® in our nonlinear algorithm)
and the simplex (Lagrange) multipliers of ELP, just as we do for the
nonlinear problem. This is the approach we prefer since it retains
the familiar linear programming terminology while avoiding transforming
ELP to standard form.

A completely different approach to the linear 11 problem is

to solve a sequence of weighted least squares problems as the Lawson

algorithm (see [17]) does for the linear 2&_ problem. This was suggested
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by Schlossmacher [18] but Gallant and Gerig [9] show that this method
can be unstable.

It is somewhat surprising, given the number of linear ll
algorithms, that there has been comparatively little work done on
the nonlinear 21 problem. Osborne and Watson [16] solve the nonlinear

21 problem by solving a sequence of linear £, problems. The solution

1
to each linear 21 problem, obtained by a linear programming technique,
is used as a search directipn along which the minimum of Fl is found
by an exact line search. We are aware of only two published methods

for the nonlinear 21 problem which use second-order information, both
of which appeared only recently. El-Attar, Vidyasagar and Dutta [8]
suggest a method related to the penalty method for nonlinear programming
in which a sequence of increasingly ill-conditioned unconstrained
optimization problems are solved. McLean and Watson [13] propose both a
first-order Levenberg-type of method similar to those of [1,12] for

the minimax problem, and a method which uses second-order information.
The latter is a two-stage method similar to that of Watson [20] for

the minimax problem, in which successive linear programming problems

are solved until it is thought that the active set has been identified,
whereupon a switch is made to solving a system of nonlinear equations

by Newton's method. The system has érder n+t, since the variables and
multipliers are obtained together. Since t may often be close to n
(t equals n 1in the linear case), the systems of equations which are

gsolved may be much larger than the ones we solve.
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We are not aware of any published methods of the projected
Lagrangian type for problem llP, although we understand that Bartels
and Conn are currently doing some related work. It would be possible
to construct a method related to ours but which solves an inequality-
constrained quadratic program variant of QP1l at each iteration as Han
[11] does for the minimax problem. However, such a QP has n+m variables
and it is not possible to transforﬁ this directly to an inequality-
constrained QP in n variables (as we transform QP1 to QP2). It would
be necessary to solve the inequality-constrained QP by a special-purpose
method taking into account the special structure, just as the Bartels,
Conn and Sinclair method essentially solves the linear program equivalent
of ELP by a special-purpose method. See [15] for remarks concerning the
relative merits of solving the equality and inequality-constrained QP's.

The remarks on asymptotic local quadratic convergence made in
[{15] for the minimax problem carry over without difficulty to our

algorithm for llP.

10. Computational Results

We present the results of applying the algorithm to 21
problems with the same definitions of {fi(x)} as the first four

problems presented in [15]. The solutions obtained are listed below.
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Problem 1.

* *
Fl(x) = 0.12434 with x = (0.10094, 1.52515, 1.97211)T .

Problem 2.
* *
Fl(x) = 0.0038768 with x = (0.19337, 0.19377, 0.10893, 0.13973)T
Problem 3.
* * T
Fl(x) = 1,00000 with x = (0.0000, 0.0002)".
Problem 4.
* *
Fl(x) = 7.8942 with x = (0.53597, 0.00000, 0.031918)T.

The results are summarized in Table 1. The termination conditions

6, ”ZTVEE||< 10-6, zTwz numerically positive

were that ||£||2< 10~
definite and AC > 0. The line search accuracy parameter n was set
to 0.9 (see [14] for the aefinition of this parameter). Several other
choices of n were tried, but n = 0.9 was the most efficient, indi-
cating as expected that a slack line search is desirable at least

on these problems. The machine used was an IBM 370/168 in double
precision, 1.e. with 16 decimal digits of accuracy. The column headed
NI reports the number of iterations réquired, which 1s also the number
of times the Hessian was approximated using finite differences. The

column headed NF gives the number of function evaluations (not including

gradient evaluations for the Hessian approximation).
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TABLE 1

Problem n m n-: NI NF

1 (Bard) 3 15 0 20 20
2 (Kowalik and Osborne) 4 11 0 11 14
3 (Madsen) 2 3 0 15 15

1 4 (El-Attar et al. #2) 3 6 2 10 11

These results demonstrate that our algorithm can be very efficient.
Final quadratic convergence was observed in all cases. The results must
however be regarded as preliminary since further work needs to be done

regarding the active set strategy.

11. Concluding Remarks

The nonlinear £, optimization problem has been shown to be as

1
tractable as the nonlinear minimax problem using a projected Lagrangian
algorithm closely related to that of [15]. Although the nonlinearly

constrained optimization problem which is equivalent to £.P involves

1
m extra variables, we have shown how to derive a method which solves
successive quadratic programming problems in only n variables. The

different roles of multiplier estimates and directions of search in

the (n+m)- and n-dimensional spaces have been emphasized.
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We could repeat many of the concluding remarks of [15] here.
In particular we observe that linear constraints can be incorporated
into the algorithm but that nonlinear constraints increase the
complexity of problem ZlP to that of the general nonlinear constrained
optimization problem. In summary, the method of this paper has been
designed to take advantage of all the special properties of the 21
problem which are not available for general constrained optimization

problems.
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